CORSO EDUCAZIONALE | GRUPPO LINFOMI IN PAZIENTI CON IMMUNODEFICIT CORSO EDUCAZIONALE GRUPPO LINFOMI IN PAZIENTI CON IMMUNODEFICIT

Update della terapia dei PTLD Federica Cavallo, MD, PhD Divisione di Ematologia, Universitá di

Milano, UNAHOTELS Galles 23 maggio 2025

Torino

Disclosures of Federica Cavallo

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
ROCHE	Y	Ν	Ν	Ν	Y	Y	Y
ABBVIE	Ν	Ν	Ν	Ν	Ν	Ν	Y
INCYTE	Ν	Ν	Ν	Ν	Y	Υ	Ν
ASTRA ZENECA	Ν	Ν	Ν	Ν	Ν	Υ	Υ
SOBI	Ν	Ν	Ν	Ν	Y	Υ	Ν
BRISTOL MYERS SQIBB	Ν	Ν	Ν	Ν	Ν	Y	Ν
PIERRE FABRE	Ν	Ν	Ν	Ν	Y	Ν	Y
NOVARTIS	Ν	Ν	Ν	Ν	Y	Ν	Y
GILEAD	Ν	Ν	Ν	Ν	Y	Ν	Y
TAKEDA	Ν	Ν	Ν	Ν	Ν	Ν	Y
LILLY	Ν	Ν	Ν	Ν	Y	Ν	Ν
BEIGENE	Ν	Ν	Ν	Ν	Υ	Ν	Y

Milano, UNAHOTELS Galles

23 maggio 2025

PTLD: Post transplant lymphoprolipherative disorders

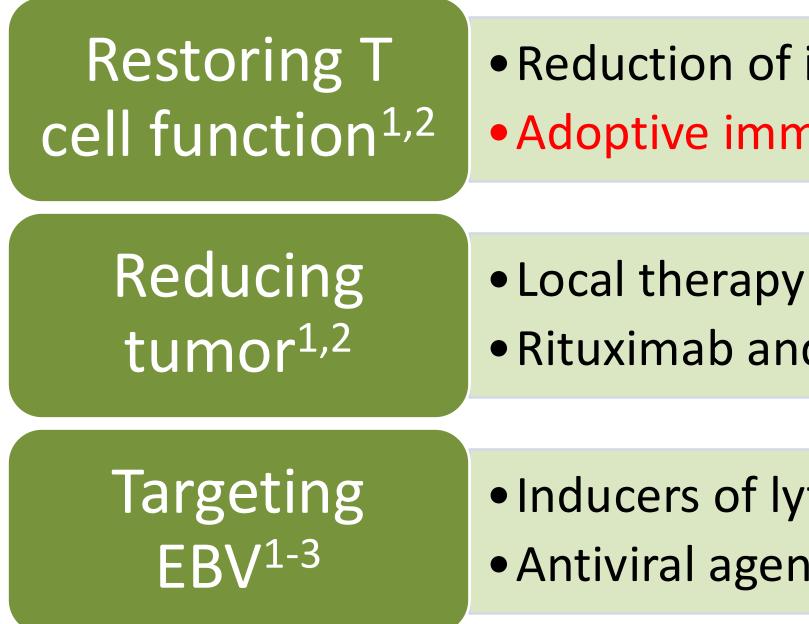
PTLD is a well-known complication of solid organ (SOT) and stem cell transplant (SCT) procedures

Variable	SOT	HCT
Typical cell of origin ¹	Recipient origin	Donor origin
Frequency ¹	1–33%	0.8–4%
EBV-associated ²	~50%	~100%
Onset time	Variable ~50% >1-year post-transplant ³	Within the first year post-transplant ⁴

EBV, Epstein–Barr virus; HCT, haematopoietic cell transplantation; PTLD, post-transplant lymphoproliferative disorder; SOT, solid organ transplantation. 1. Fujimoto A, et al. Cancers (Basel). 2020;12:328; 2. Dierickx D, et al. N Engl J Med. 2018;378:549–562; 3. Ghobrial IM, et al. Transplantation. 2005;79(2):244–247; 4. Tai R, et all. Br J Radiol. 2015;88(1052):20140861.

Milano, UNAHOTELS Galles

EBV and post-transplant lymphoproliferative disorder: a complex relationship


Nader Kim El-Mallawany ^{1,2} and Rayne H. Rouce ¹⁻³	Framework	Original category	Infiltrative pattern*	Histology	Typical therapy	EBV association	Think of as
	Post-transplant EBV	EBV viremia	None	Not applicable (no lesions present, therefore no biopsy)	RI and clinical observation	Always	Asymptomatic posttransplant EBV infection
HETEROGENEOUS SPECTRUM OF PTLD	Quintessential PTLD	Early lesion	Nondestructive	Plasmacytic hyperplasia	Most likely to respond to RIS or	Virtually always EBV*	EBV-driven reactive lymphoid hyperplasia
POST-TX LYMPHOMA QUINTESSENTIAL PTLD MONOCLONAL PROLIFERATION POLYCLONAL PROLIFERATION				Infectious mononucleosis-like	surgical resection		
LYMPHOID LYMPHOID LYMPHOID MALIGNANCY NEOPLASIA HYPERPLASIA				Florid follicular hyperplasia			
DESTRUCTIVE LESIONS NON-DESTRUCTIVE NON-DESTRUCTIVE, EARLY LESION PTLD		Polymorphic	Destructive	Polymorphous infiltrate with various stages of B-cell maturation, often clonal	May respond to RIS, but often requires rituximab or CPR ^b	Typically EBV* (>95%)	Lymphoid neoplasia
EBV+ DLBCL EBV- DLBCL EBV- DLBCL HGBL NOS		Monomorphic	Destructive	DLBCL	Low-dose CPR. Potentially, up to 50% respond to rituximab alone.	Quintessential cases are typically EBV*	Lymphoid neoplasia
BURXITT PLASMA CELL	Post-transplant NHL	Monomorphic	Destructive	DLBCL	Multiagent chemotherapy for mature B-NHL	EBV ⁻ potential red flag Refractory EBV [*] cases	De novo lymphoma in an immunocompromised patient
T/NK CELL	Post-transplant	Monomorphic	Destructive	Burkitt lymphoma	Require disease-	Burkitt usually	De novo lymphoma in
CH	NHL		High-grade B-cell lymphoma	chemotherapy EBV*	an immunocompromised patient		
				T/NK-cell lymphoma		Others often	
				Plasma cell neoplasm		EBV-	
	Post-transplant HL	Hodgkin lymphoma	Destructive	Classic Hodgkin lymphoma	Requires disease- specific multiagent chemotherapy	Usually EBV* (>75%)	De novo lymphoma in an immunocompromised patient

Milano, UNAHOTELS Galles

Hematology Am Soc Hematol Educ Program 2024

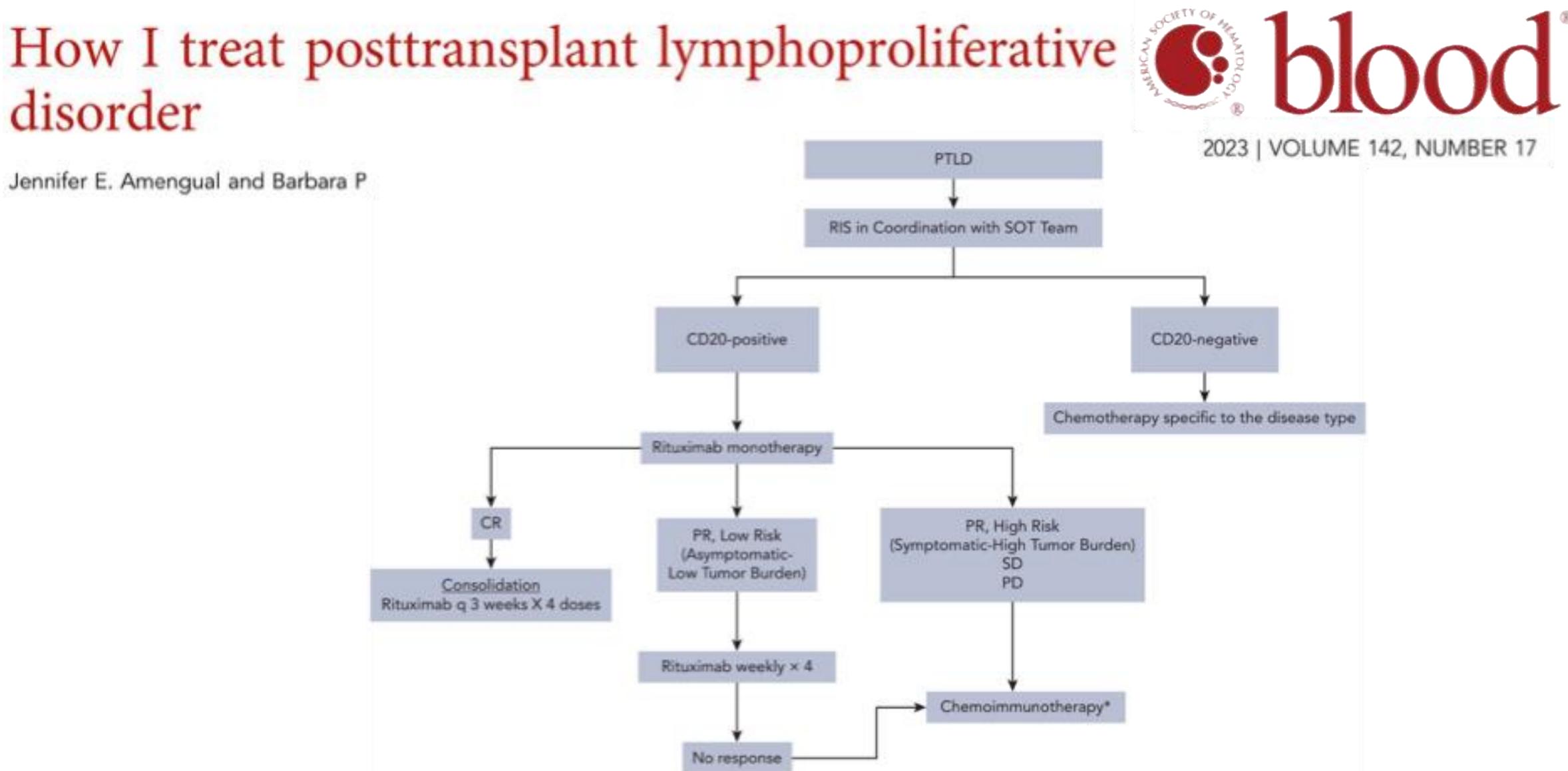
Current PTLD treatment options

Prevent allograft rejection \triangleright Mitigate the toxicity of treatment and the increased susceptibility to infections

Milano, UNAHOTELS Galles

 Reduction of immune suppression Adoptive immunotherapy

Rituximab and/or chemotherapy


 Inducers of lytic cycle Antiviral agents

disorder

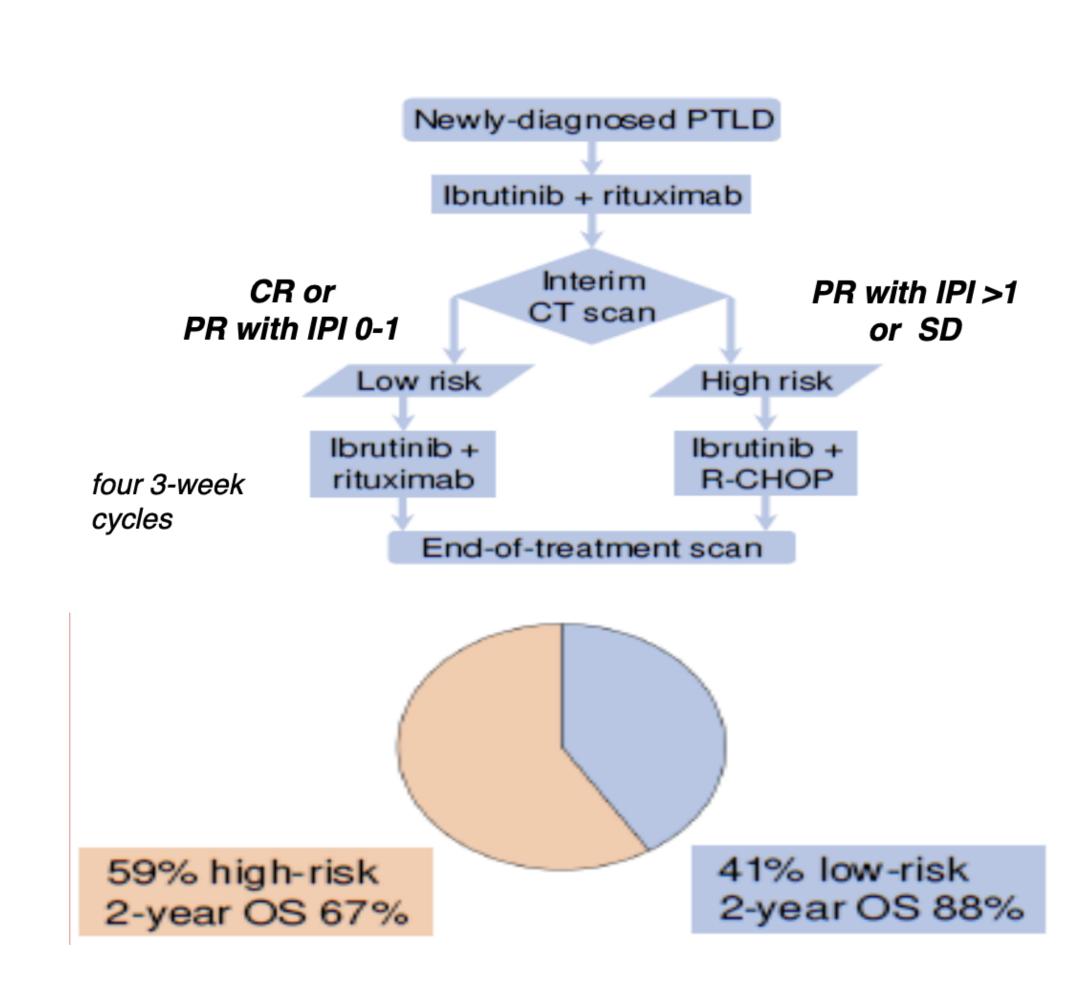
Jennifer E. Amengual and Barbara P

Milano, UNAHOTELS Galles

TIDAL

Prospective single arm phase 2 trial investigating activity and tolerability of ibrutinib combined with risk stratified therapy for first line treatment

Schedule: 49 days of Ibrutinib 560 mg once daily plus 4 doses of weekly rituximab

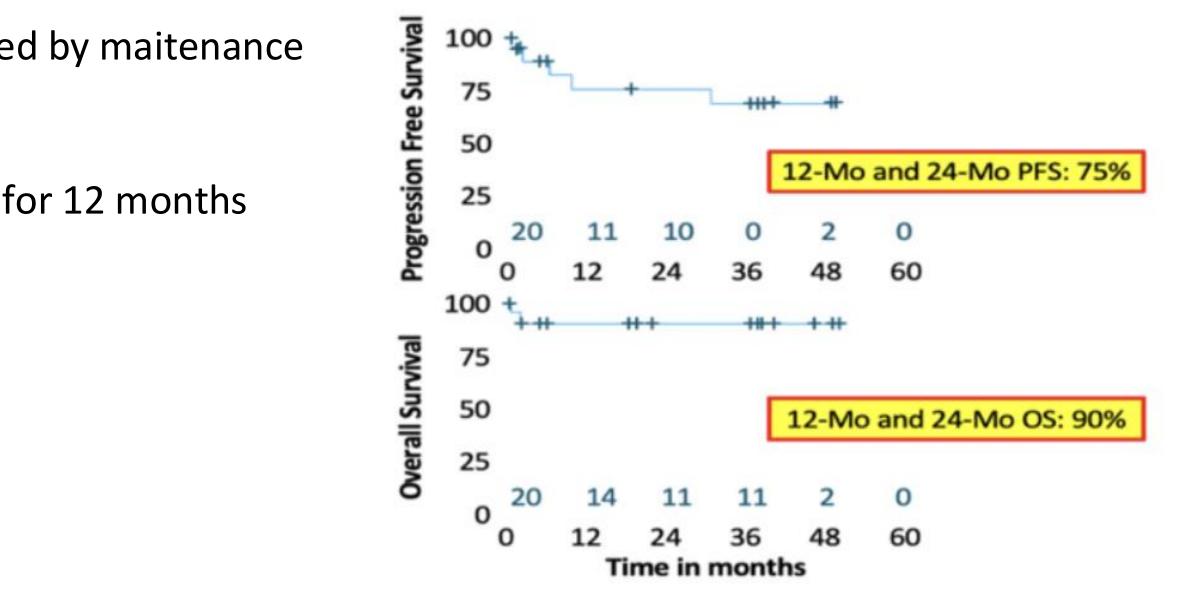

39 patients included:

- CR 29% after first induction \succ
- ORR 67% (CR 56%) at end of treatment \succ
 - ORR 81 % (CR 75%) in the low-risk arm
 - ORR 57% (CR 43%) in the high-risk arm
- 2-years PFS 56% and OS 75%
- PRIMARY ENDPOINT: CR on interim scan \succ \rightarrow NOT REACHED

CHOP, cyclophosphamide, doxorubicin, vincristine, prednisolone; CR, complete response; IPI, international prognostic index; IS, immunosuppression; ORR, overall response rate; PD, progressive disease; PR, partial response; PTLD, post-transplant lymphoproliferative disorder; PFS, progression free survival; OS, overall survival.

Milano, UNAHOTELS Galles

Chaganti, Blood 2024

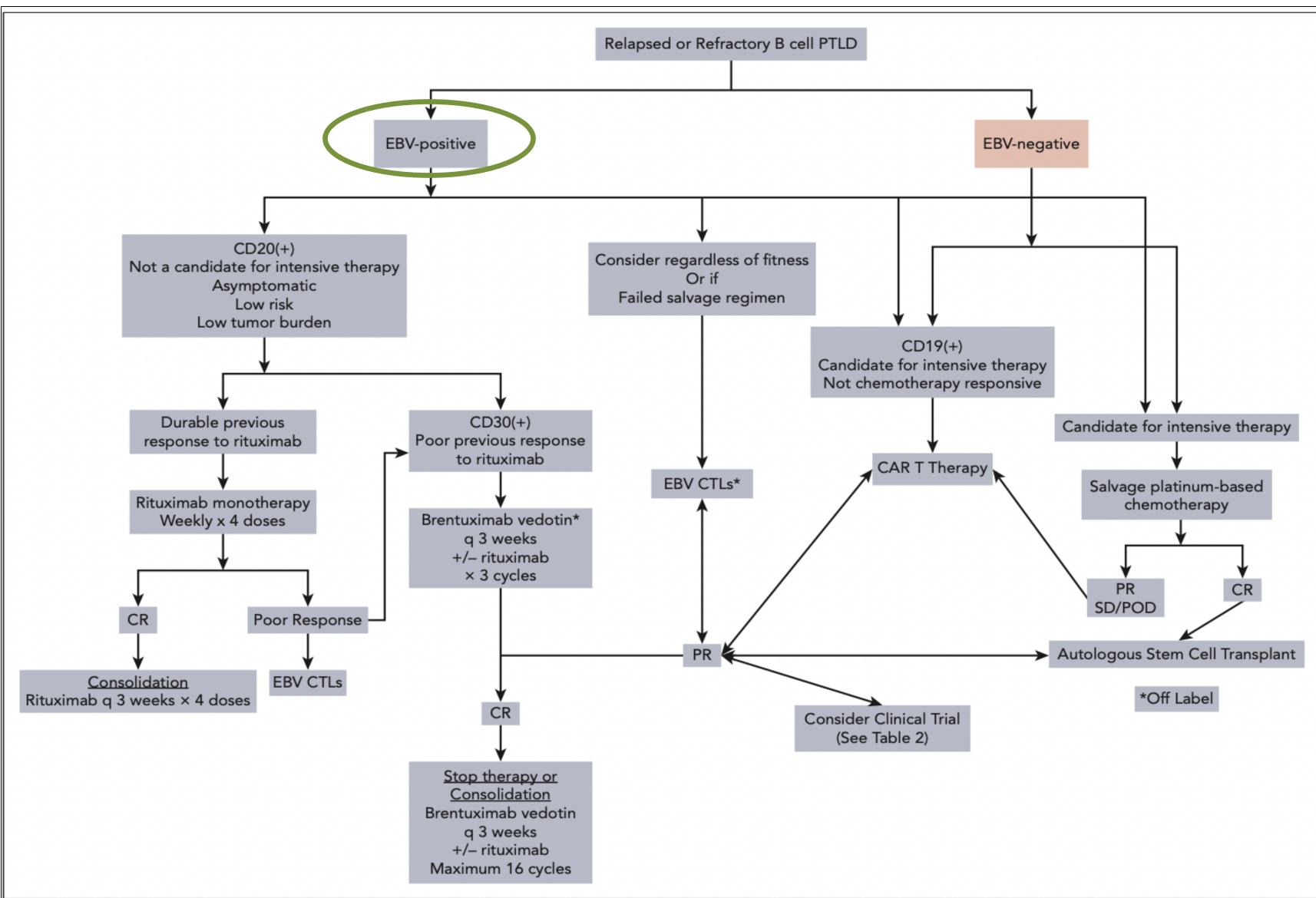

Brentuximab-Rituximab phase I/II trial

- Investigate efficacy of Bv+R once weekly for 4 weeks, followed by maitenance
- Schedule: •
 - pts in PD after induction: chemotherapy
 - pts in CR/PR/SD after induction \rightarrow maintenance with Bv+R for 12 months
- 20 pts enrolled: (55% monomorphic, IPI >2, 35% ECOG 2)
- ORR 75%, CR 60%
- Median time to response: 28 days
- High rate of toxicities: 40% neutropenia, 30% hypertension, 25% infections, 13% pheripheral neuropathy

Bv, brentuximab vedotin; R, rituximab; CR, complete response; IPI, international prognostic index; IS, immunosuppression; ORR, overall response rate; PD, progressive disease; PR, partial response; PFS, progression free survival; OS, overall survival.

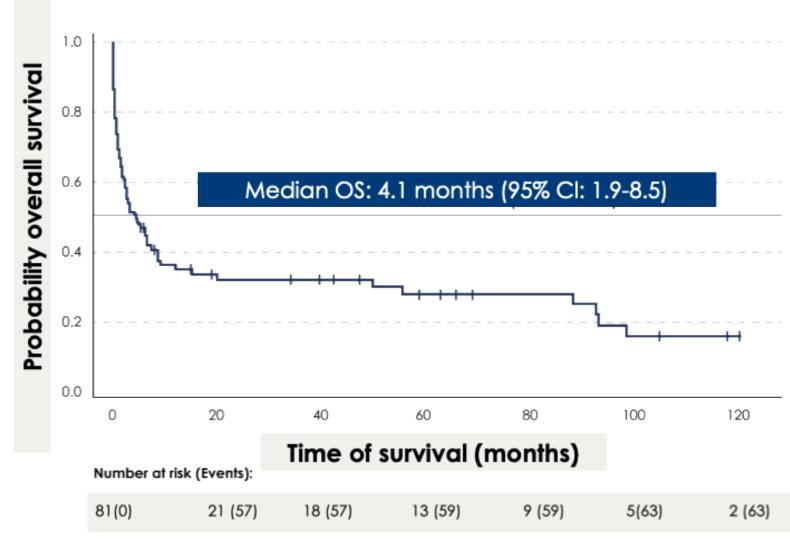
Pearse et al, Leuk Lymphoma 2021

Milano, UNAHOTELS Galles



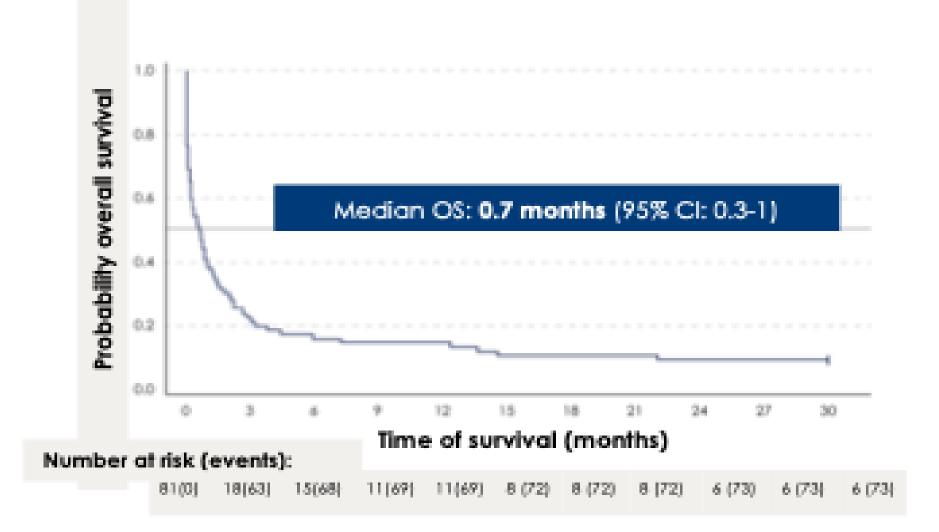
Treatment at relapse

Milano, UNAHOTELS Galles


Amengual J and Pro B, Blood 2023

Outcomes of SOT/HCT recipients with relapsed/refractory EBV+ PTLD

A large multinational, multicenter* retrospective chart review study of EBV+ PTLD patients following HCT or SOT who received rituximab or rituximab plus chemotherapy between January 2000–December 2018 and were refractory or relapsed at any point after such therapy^{1,2}


Adapted from Dhamidharka V, et al. 2022

* Data were collected from 29 centers across North America (United States and Canada) and the European Union.^{1,2} EBV+, Epstein-Barr virus positive, GvHD, graft vs host disease; HCT, haematopoietic cell transplant; OS, overall survival; PTLD, post-transplant lymphoproliferative disorder; R/R, relapsed/refractory; SOT, solid organ transplantation.

- 1. Dharnidharka V, et al. HemaSphere 2022;6(Abstract):997–998.
- 2. Socié G, et al. Bone Marrow Transplant. 2024;59(1):52–58; 2

Milano, UNAHOTELS Galles

Tabelecleucel is an allogeneic T-cell immunotherapy licensed for the treatment of relapsed/refractory EBV+ PTLD¹

Tabelecleucel is indicated:¹

PTLD who have received at least one prior therapy

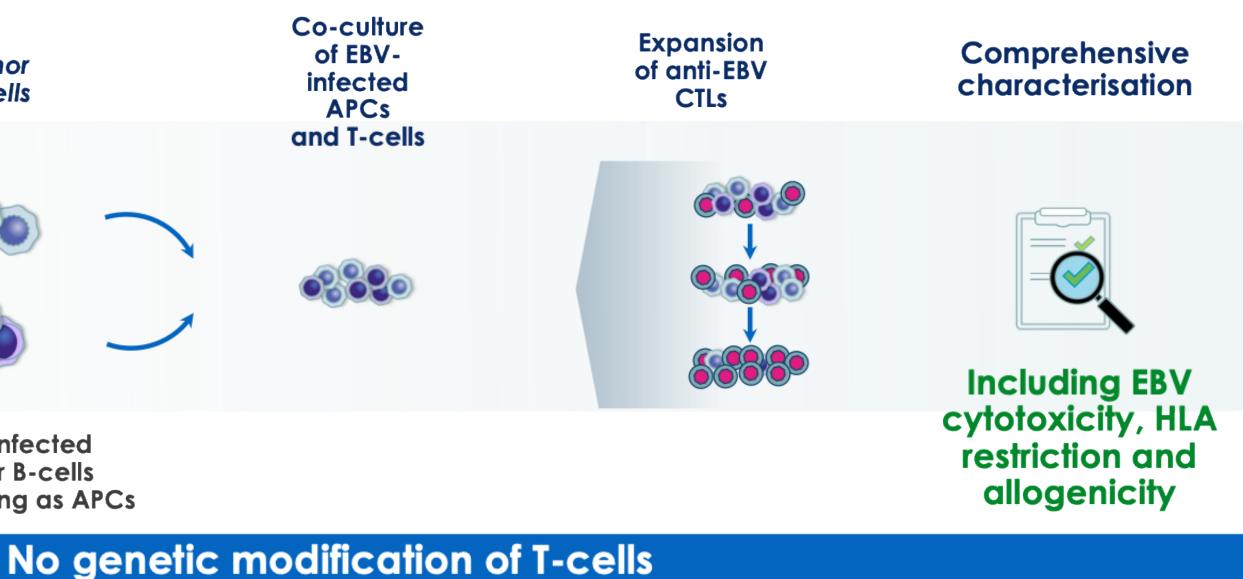
chemotherapy is inappropriate

1. tabelecleucel EU SmPC; 2. tabelecleucel UK SmPC; 3. tabelecleucel CH SmPC

Milano, UNAHOTELS Galles

- As monotherapy for the treatment of adult and paediatric patients 2 years of age and older with relapsed or refractory EBV+
- For SOT patients, prior therapy includes chemotherapy unless

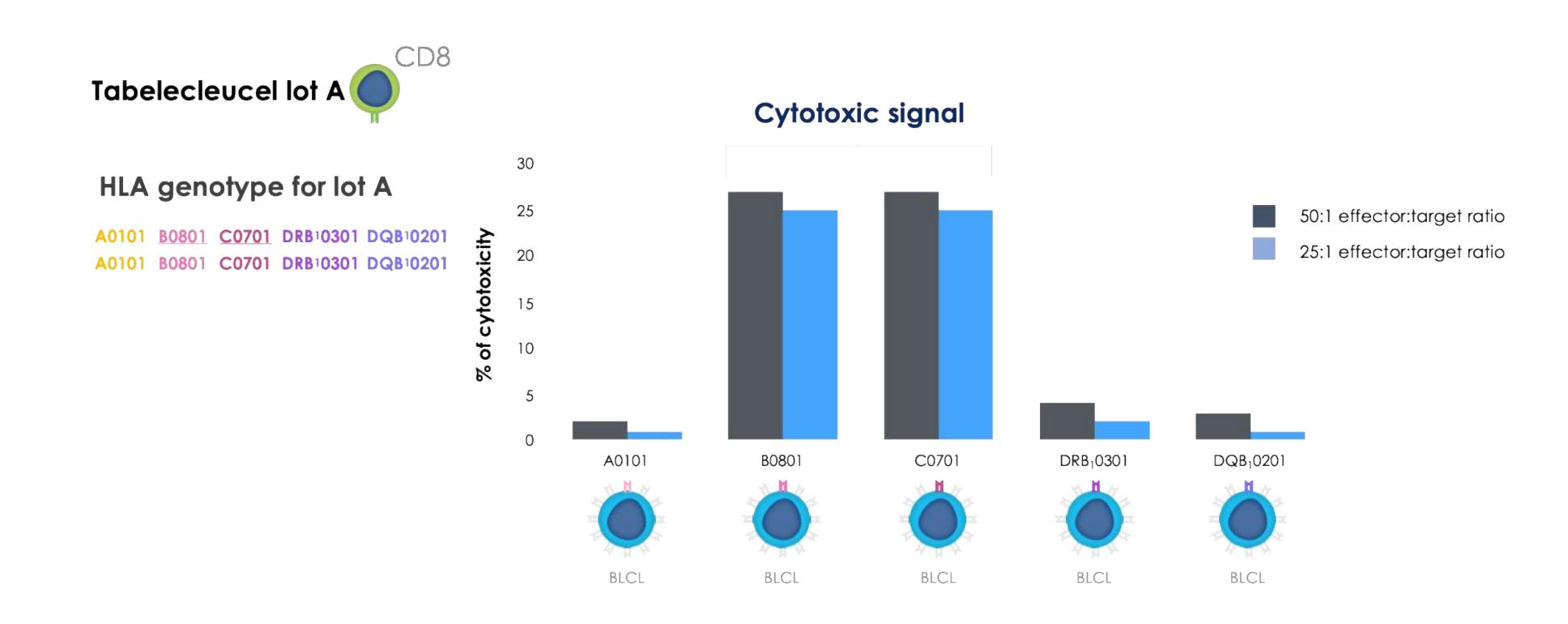
- Tabelecleucel is licensed in Europe, including the UK and Switzerland in the outlined indication^{1–3} and is currently marketed in Italy.
- EBV+, Epstein Barr virus positive; UK, United Kingdom; PTLD, post-transplant lymphoproliferative disorder; SOT, solid organ transplantation


Manufacturing of tabelecleucel

Tabelecleucel is manufactured from healthy EBV+ donors with diverse HLA profiles to produce expanded CTL lots that are characterised by EBV-specific cytotoxicity and HLA restriction¹⁻³ **PBMCs Co-culture** collected **Expansion** Comprehensive of EBV-Donor from EBV+ of anti-EBV infected characterisation **T-cells** donor CTLs **APCs** and T-cells **6022** Including EBV cytotoxicity, HLA **EBV-infected** restriction and donor **B**-cells functioning as APCs

EBV, Epstein-Barr virus; EBV+, Epstein Barr virus positive; HLA, human leukocyte antigen; PTLD, post-transplant lymphoproliferative disease; TCR, T-cell receptor.

1. Prockop S, et al. Biol Blood Marrow Transplant. 2018:24(3_suppl):S41–S42; 2. Prockop S, et al. J Clin Oncol. 2016:34(15_suppl):Abstract 3012.


Milano, UNAHOTELS Galles

Characterising the tabelecleucel lots with a cytotoxic assay: determining cytotoxicity (HLA restriction)¹

BLCL, B lymphoblastoid cell line; EBV-CTL, Epstein-Barr virus-specific cytotoxic T lymphocyte; HLA; human leukocyte antigen; 1. Barker JN et.al., Blood 2010;116(23):5045-5949.

Milano, UNAHOTELS Galles

Adapted from Barker JN, et.al. Blood. 2010;116(23):5045-9.

How to establish the suspected origin of EBV+ PTLD disease

If biopsy high resolution HLA typing is **not** available, the origin of the disease must be defined:

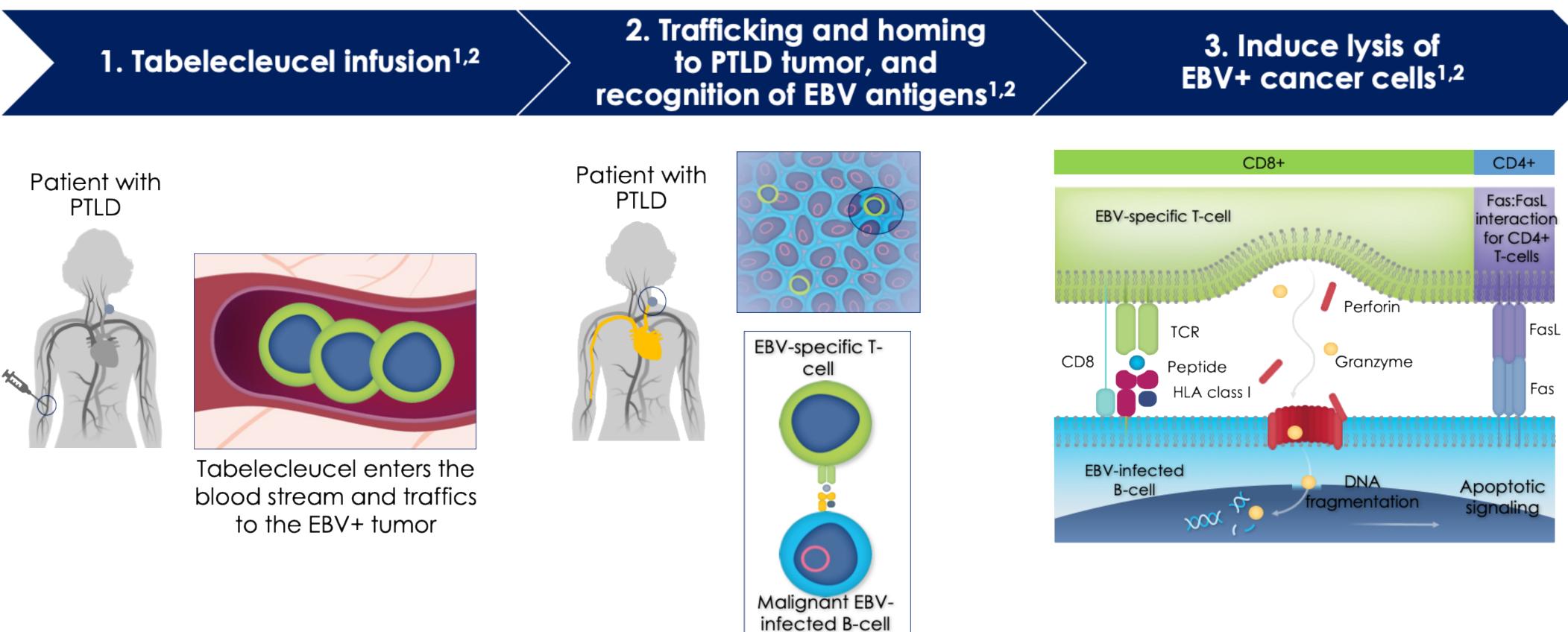
If the patient and donor gender are matched:

Use clinical assumptions:

- Patient/donor EBV serostatus before transplant
- Timing of PTLD diagnosis from transplant
- Disease location (eg. organ involvement)

EBV+, Epstein-Barr virus positive; FISH, fluorescence in situ hybridisation; HLA, human leukocyte antigen; PTLD, post-transplant lymphoproliferative disorder.

Milano, UNAHOTELS Galles

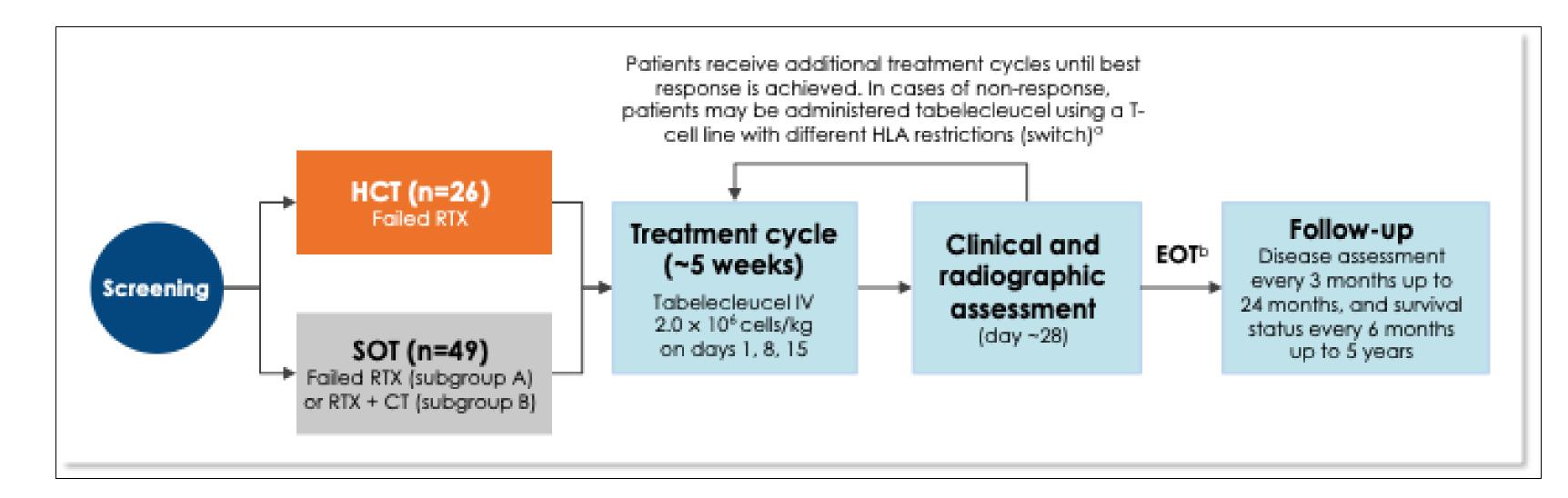

- The suspected origin of the disease is required to ensure an appropriate tabelecleucel lot is selected
 - The **BEST OPTION** is to obtain **high resolution HLA typing** of the disease biopsy

If the patient and donor gender are mis-matched:

Recommend to perform a chromosome FISH test

Tabelecleucel mechanism of action

CD4/8, cluster of differentiation 4/8; DNA, deoxynucleic acid; EBV, Epstein-Barr virus; EBV+, Epstein Barr virus positive; FasL, fas ligand; HLA, human leukocyte antigen; PTLD, post-transplant lymphoproliferative disease; TCR, T-cell receptor.


1. Prockop S, et al. Biol Blood Marrow Transplant. 2018:24(3_suppl):S41–S42; 2. Prockop S, et al. J Clin Oncol. 2016:34(15_suppl):Abstract 3012.

Milano, UNAHOTELS Galles

ALLELE: a global, multicentre, open-label Phase 3 study of tabelecleucel after failure of rituximab ± chemotherapy in patients with EBV+ PTLD following allogeneic HCT or SOT¹

Key eligibility criteria:

- Prior allogeneic HCT or SOT
- Biopsy-proven EBV⁺ PTLD
- Previous RTX or RTX-CT^c failure
- ECOG PS ≤3

Primary endpoint: ORR^d Key secondary endpoints: • TTR and time to best response OS in responders vs non-responders

^aPatients may receive up to 4 (in HCT group) or 2 (in SOT group) different HLA restrictions. ^bEvaluated by independent review. ^cIncluding R-CHOP. ^aDefined as any of the following: maximal response achieved; unacceptable toxicity; initiation of non-protocol therapy; or failure of up to 4 (in HCT group) or 2 (in SOT group) different HLA restrictions; CT, chemotherapy; EBV+, Epstein–Barr virus-positive; ECOG PS, Eastern Cooperative Oncology Group performance status; HCT, hematopoietic cell transplant; IV, intravenous; ORR, objective response rate; OS, overall survival; PFS, progression free survival; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone; RTX, rituximab; SOT, solid organ transplant; TTR, time to response.

Mahadeo KM, et al. Lancet Oncol 2024;25:376–87.

Milano, UNAHOTELS Galles

Baseline Demographics and Disease Characteristics (1/2)

			•
	OOK		
Dem			
		- P -	

Age, median (range), years

Male sex, n (%)

ECOG PS score, median (range)^a

ECOG PS score ≥2, n (%)^b

Disease characteristics

Extranodal disease at screening, n (%)

PTLD-adapted prognostic index, n (%)^c

High risk

Intermediate risk

Low risk

Unknown

PTLD morphology, n (%)

Diffuse large B-cell lymphoma

Plasmablastic lymphoma

Otherd

Median (range) time, months

From transplant to EBV⁺ PTLD diagnosis

From EBV⁺ PTLD diagnosis to first tabelecleucel administration

Data cutoff date: Oct 9, 2023.

^aData are shown in patients aged ≥16 years and having baseline ECOG measurement (n=35; n=13 for HCT and n=22 for SOT). ^bData are shown in patients aged ≥16 years (n=68; n=25 for HCT and n=43 for SOT). ^cPTLD-adapted prognostic index at study entry: low risk (no high risk factors among age, ECOG, and LDH vs intermediate risk (one high risk factor) vs high risk (two or three high risk factors); data is shown in patients aged ≥16 years. ^dMorphologies not clearly diffuse large B-cell lymphoma or plasmablastic lymphoma were categorized as Other. ECOG = Eastern Cooperative Oncology Group; HCT = hematopoietic cell transplant; SOT = solid organ transplant.

Milano, UNAHOTELS Galles

HCT (n = 26)	SOT (n = 49)	All (N = 75)
49.3 (3.2–73.2)	42.8(2.7–81.5)	44.4 (2.7–81.5)
15 (57.7)	29 (59.2)	44 (58.7)
1 (0–3)	1 (0–3)	1 (0–3)
6 (24)	12 (27.9)	18 (26.5)
16 (61.5)	40 (81.6)	56 (74.7)
n = 25	n = 43	N = 68
12 (48.0)	17 (39.5)	29 (42.6)
13 (52.0)	21 (48.8)	34 (50.0)
0	4 (9.3)	4 (5.9)
0	1 (2.3)	1 (1.5)
n = 26	n = 49	N = 75
18 (69.2)	34 (69.4)	52 (69.3)
1 (3.8)	2 (4.1)	3 (4.0)
7 (26.9)	12 (24.5)	19 (25.3)
3.9 (0.6–66.0)	10.8 (2.4-314.4)	_
2.1 (0.6–28.1)	6.9 (1.3–190.5)	4.6 (0.6–190.5)

Baseline Demographics and Disease Characteristics (2/2)

Treatment and prior therapies

Median number of lines of prior systemic treatment, n (range)

Prior rituximab monotherapy, n (%)

Prior chemotherapy, n (%)

Prior chemotherapy in combination with rituximab, n(%)

Prior immunotherapy, n (%)

Transplant type, n (%)

Kidney
Heart
Lung
Liver
Multivisceral

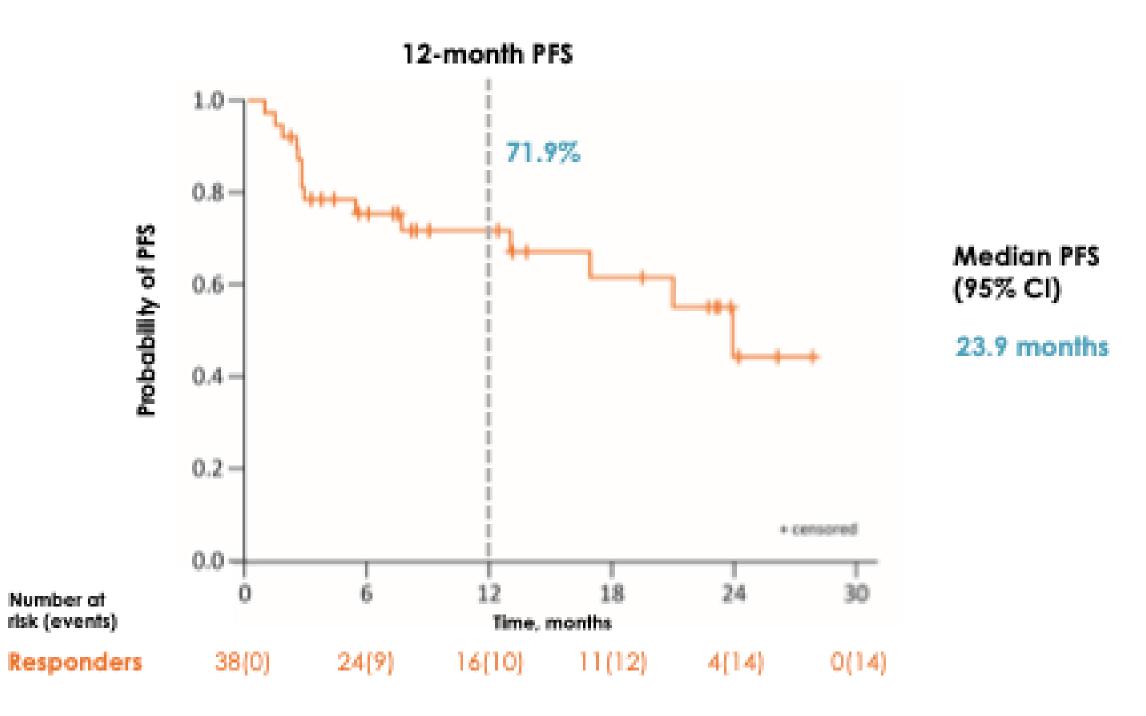
Milano, UNAHOTELS Galles

HCT (n=26)	SOT (n=49)	All (N=75)
1 (1—4)	1 (1–5)	1 (1–5)
26 (100.0)	39 (79.6)	65 (86.7)
4 (15.4)	31 (63.3)	35 (46.7)
0	28 (57.1)	28 (37.3)
1 (3.8)	2 (4.1)	3 (4.0)

-	14 (28.6)	_
_	12 (24.5)	_
_	9 (18.4)	_
_	4 (8.2)	_
_	10 (20.4)	_

Response and survival in the ALLELE trial

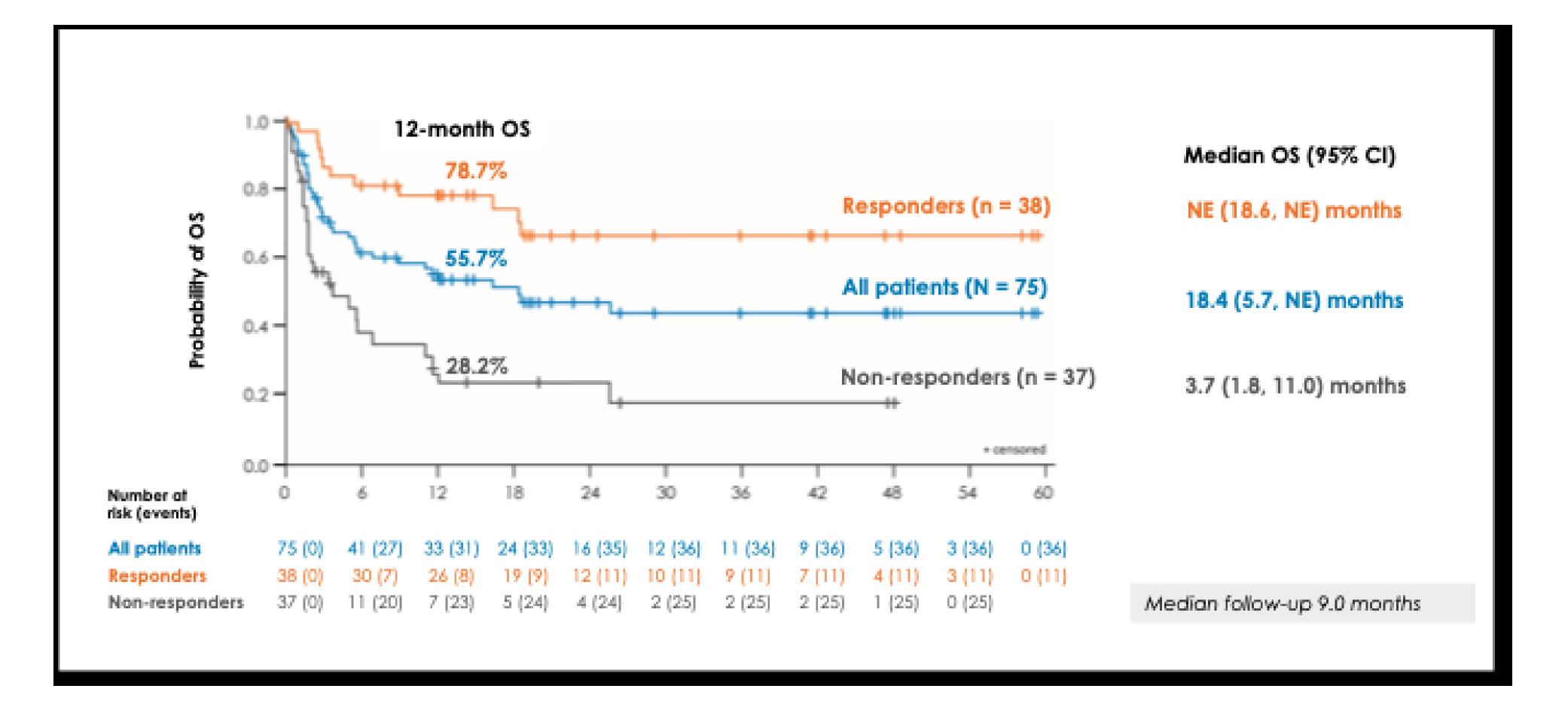
Overall Response Rate, %


Median time to response in all patients was **1.1 months** Estimated median duration of response (DOR) was **23 months**

Data cutoff date: Oct 9, 2023

^aResponse assessed per Lugano classification with LYRIC modification by IORA. ^bEstimated by the Kaplan–Meier method. CI, confidence interval; CR, complete response; DOR, duration of response; HCT, hematopoietic cell transplant; IORA, independent oncologic response adjudication; NE, not estimable; PR = partial response; SOT, solid organ transplant; TTR, time to response.

Median PFS was estimated by the Kaplan–Meier method. CI, confidence interval; NE, not estimable; PFS, progression-free survival.


Milano, UNAHOTELS Galles

Responders to tabelecleucel had improved 1-y OS rate

Milano, UNAHOTELS Galles

Safety Outcomes

	HCI (h = 26)	SOT (n = 49)	All (N = 75
TESAEs, n (%)			
Any	17 (65.4)	30 (61.2)	47 (62.7)
Treatment-related ^a	2 (7.7)	4 (8.2)	6 (8.0)
Treatment-related fatal	0	0	0
Treatment Emergent Identified and	Potential Risks	including AESI	by SOC, n (%
Tumor flare reaction	0	0	0
Infusion-related reaction	0	0	0
Cytokine release syndrome	0	0	0
Transmission of infectious disease	0	0	0
Graft-vs-host disease	3 (11.5)	0	3 (4.0)
Bone marrow/organ rejection	0	3 (6.1)	3 (4.0)
ICANS	0	0	0
Immunogenicity ^b	0	0	0

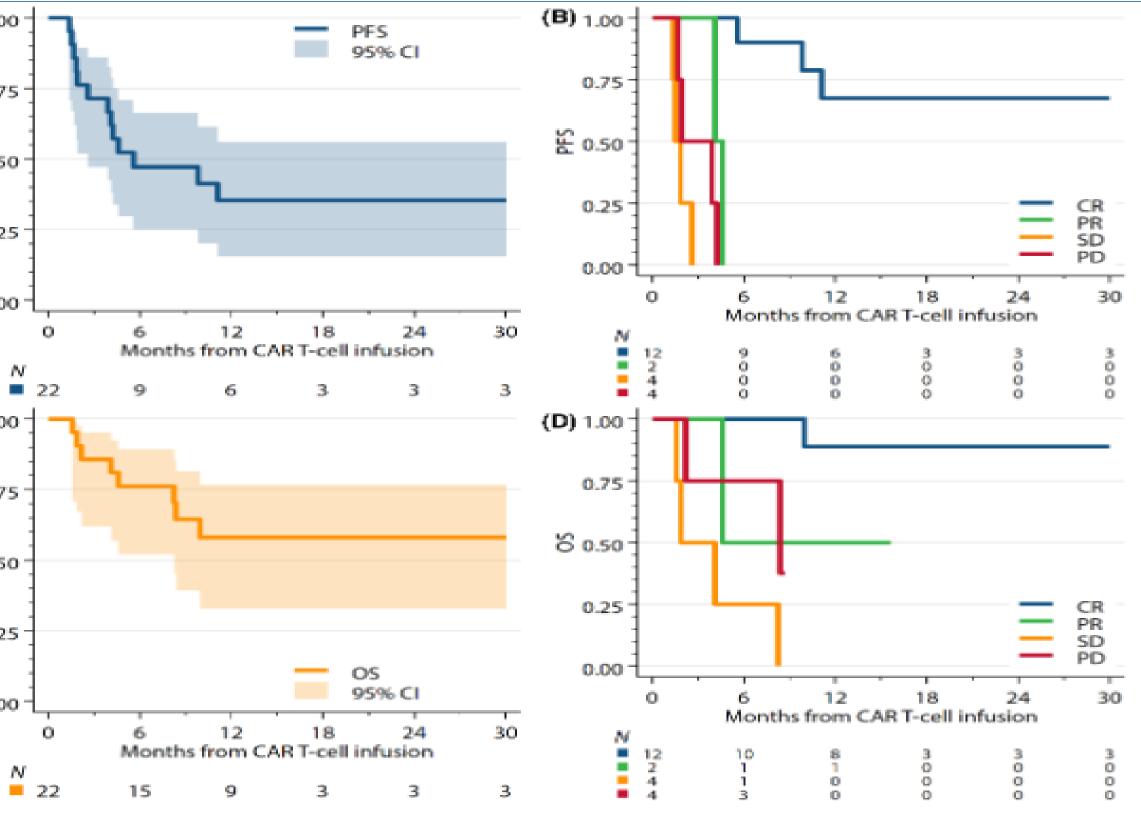
Data cutoff date: Oct 9, 2023

Fatal TEASAEs were disease progression (n = 7), multiple organ dysfunction syndrome (n = 2), respiratory failure (n = 1), COVID-19 (n=1), acute respiratory distress (n=1), pneumococcal sepsis (n=1), shock (n=1). ^aTreatment-related TESAEs were pyrexia, diarrhea, hypoxia, hypotension, rash, erythematous, and tachycardia ^b 47 subjects had pan anti-HLA antibody testing completed, 18 of which were evaluable (18 in target population) for anti-HLA antibody assessment

AESI, adverse event of special interest; HCT, hematopoietic cell transplant; ICANS, immune effector cell-associated neurotoxicity syndrome; SOT, solid organ transplant; TESAE, treatment-emergent serious adverse event.

Milano, UNAHOTELS Galles

- Most treatment-emergent serious adverse events (TESAEs) were not treatment related
- None of the fatal TESAEs were related to tabelecleucel
- There were **no reports** of
 - tumor flare reaction
 - infusion-related reaction
 - cytokine release syndrome
 - bone marrow rejection
 - immune effector cell-associated neurotoxicity syndrome (ICANS),
 - Immunogenicity
 - transmission of infectious diseases (including cytomegalovirus)
- No cases of tabelecleucel-related graft-vs-host disease or organ rejection were reported


CAR-T limited literature

Age at PTLD diag	nosis, <i>N</i> (%)	Bulky disease (≥10 cn CAR-T), N (%)	n at
Age<60	14 (64)	Yes	5 (23)
Age≥60	8 (36)	No	17 (77)
Gender, N (%)		Bone marrow involve	ement, N (%)
Male	16 (73)	Yes	4 (18)
Female	5 (22)	No	10 (45)
Unavailable	1 (5)	Unavailable	8 (36)
ECOG at PTLD re	lapse, N (%)	Extranodal sites pres	ent, N (%)
0	9 (41)	≤1	17 (77)
1	12 (55)	>1	5 (23)
2	1 (5)		
IPI score prior to C	CAR-T, N (%)	CNS disease involven	nent, N (%)
1	1 (5)	Yes	1 (5)
2	5 (23)	No	21 (95)
3	11 (50)		
4	2 (9)		
5	1 (5)		
Unavailable	2 (9)		
PTLD stage, N (%)	1	Organ transplant, N	(%)
I to II	2 (9)	Kidney	14 (64)
III to IV	20 (91)	Liver	3 (14)
LDH, N (%)		Heart	2 (9)
Elevated	18 (82)	Kidney, Pancreas	1 (5)
Normal	4 (18)	Intestine	1 (5)
		Lung	1 (5)
EBV tumour statu	s, N (%)		
Positive	1 (5)		
Negative	18 (82)		
Unavailable	3 (14)		

ORR 64%, CR 55% 2y PFS and OS: 35% and 58%

Milano,	UNAHO	DTELS	Galles
---------	-------	--------------	--------

C	CR	S
	C	4
T	R	N

S G1 45%, G2 27%, G3-4 5% NS 72%, G1 9%, G2-3 27%, G4 9% M 9%

McKenna M, et al. Br J Haematol 2023;202:248-55

Take Home messages

- PTLD are rare and heterogenous diseases
- Multidisciplinary approach
- **Dismal survival for R/R PTLD**
- **EBV+ PTLD: EBV-CTLs now available**
- Early detection of potential candidates for tabelecleucel treatment
- **Prospective international trials to further improve outcome**
- Further development of CAR-T strategies, new drugs for R/R EBV- PTLD

Milano, UNAHOTELS Galles

Ringraziamenti

Ematologia Universitaria di Torino Prof Benedetto Bruno

Gruppo Linfomi

Cavallo Federica Simone Ferrero Michele Clerico Candida Vitale Simone Ragaini Francesca Perutelli

Laboratorio di Biologia Molecolare

Daniela Drandi Elisa Genuardi **Aurora Civita**

Study Coordinators

Alessio Lonardo Velleda Ilaria Zorzetto Sonia Rizzitelli

Medici Specializzandi **Chiara Consoli**

Milano, UNAHOTELS Galles

Insieme contro i linfomi

www.filinf.it

Antiviral: NAVAL-1 trial

Phase 2 trial, multicentric, open-label, single arm basket study

- Inclusion criteria: >18 aa, EBV+ R/R lymphoma following 1 or more systemic therapies, no other therapies available; not elegible to HD-CT with allo/AutoSCT or CAR-T; no CNS involvement, adeguate hepatic and hematological fuction
- Aim: evaluate safety and efficacy of the all oral combination of nanatinostat (class I HDAC inhibitor) with valganciclovir in R/R EBV+ lymphoma pts (PTCL, PTLD, DLBCL)

Rationale:

EBV is predominantly latent in infected tumour cells, and should be re-sensitised to become susceptible to antivirals^{1,2}

- \rightarrow Iganciclovir-induced inhibition of viral and cellular DNA synthesis and apoptosis
- 13 PTLD patients
- •43 pts evaluable, ORR 40% (CR 19%), median DoR 10,4 months

HD-CT high dose chemotheraphy, SCT, stem cell transplant; R/R, relapse/refractory; CNS, central nervous system; HDAC, histone deacetylase ; DLBCL, diffuse large B cell lymphoma, PTCL, pheripheral T cell lymphoma; EBV, Epstein-Barr virus; HDAC, histone deacetylase; PTLD, posttransplant lymphoproliferative disorder.

Haverkos B, et al. Blood Adv 2023

Milano, UNAHOTELS Galles

•Nanatinostat induces EBV lytic activation and express of the EBV BGLF4 proteine kinase \rightarrow activates ganciclovir via phosphorylation

•Well tolerated, common Aes: nausea (38%) thrombocytopenia (436%), neutropenia (34%), anemia (34%), fatigue (26%), inappetence (22%)

